Home
Class 11
MATHS
If C(r) stands for ""^(n)C(r), then the ...

If `C_(r)` stands for `""^(n)C_(r)`, then the sum of the series `(2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-...+(-1)^(n)(n+1)C_(n)^(2)]`, where n is an even positive integers, is:

A

0

B

`(-1)^(n//2) (n+1)`

C

`(-1)^(n) (n+2)`

D

`(-1)^(n//2) (n+2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(r) stands for nC_(r), then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-......+(-1)^(n)(n+1)C_(n)^(2)], where n is an even positive integer,is

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Prove that C_(0)2^(2)C_(1)+3C_(2)4^(2)C_(3)+...+(-1)^(n)(n+1)^(2)C_(n)=0 where C_(r)=nC_(r)

1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)

1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)