Home
Class 11
MATHS
In the expansion of ((x)/(costheta)+(1)/...

In the expansion of `((x)/(costheta)+(1)/(xsintheta))^(16)`, if `l_(1)` is the least value of the term independent of `x` when `(pi)/(8) le theta le (pi)/(4)` and `l_(2)` is the least value of the term independent of `x` when `(pi)/(16) le theta le (pi)/(8)`, then the value of `(l_(2))/(l_(1))` is

A

`1:8`

B

`1:16`

C

`8:1`

D

`16:1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

Solve for theta : sintheta +sin5theta = sin3theta when o le theta le pi

If pi le x le (3pi)/(2) then sin pi le sinx le sin(3pi)/(2)

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

If cos^2 theta - sin^2 theta = 1/3 , where 0 le theta le pi/2 , then the value of cos^4 theta - sin^4 theta is