Home
Class 11
MATHS
Let m ,n in N and g c d ( 2, n)=1. i...

Let `m ,n in N and g c d ( 2, n)=1.` if `30((30),(0))+((30),(1))+....+2((30),(28))+1((30),(29))=n.2^m`
then n+m is equal to
( here ` ((n),(k)) =""^(n)C_K`)

Text Solution

Verified by Experts

The correct Answer is:
45
Promotional Banner

Similar Questions

Explore conceptually related problems

30.^(30)C_(0)+29.^(30)C_(1)+ . . . +1.^(30)C_(29)=m2^n and m , n in N then m+n =

If m tan(theta-30^(@))=n tan(theta+120^(@)) then (m+n)/(m-n) is equal to

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

If k in R_(o) then {adj(kI_(n))} is equal to (A) K^(n-1)(B)K^(n(n-1))(C)K^(n)(D)k

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

If C(n,12) = C(n,16) , then C(30,n) = ?