Home
Class 11
MATHS
If sin x + cos x = 1/5, then tan 2x is...

If `sin x + cos x = 1/5`, then tan 2x is

A

`(25)/(17)`

B

`(7)/(25)`

C

`(25)/(7)`

D

`(24)/(7)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin x + cos x)/(sin x - cos x) = (6)/(5) , then the value of (tan^(2) x + 1)/(tan^(2) x-1) is :

If 3sin x+4cos x=5, then 6(tan)(x)/(2)-9(sin)^(2)(x)/(2)=

Statement -1: If 2"sin"2x - "cos" 2x=1, x ne (2n+1) (pi)/(2), n in Z, "then sin" 2x + "cos" 2x = 5 Statement-2: "sin"2x + "cos"2x = (1+2"tan" x - "tan"^(2)x)/(1+"tan"^(2)x)

Find sin 2x + cos 4x if tan 2x. Tan 4x = 1

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

The derivative of tan^(-1)((sin x - cos x)/(sin x + cos x)) , with respect to x/2 , where (x in(0,pi/2)) is

(sin 7x - sin 5x)/(cos 7x + cos 5x) = tan x

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

tan ^ (- 1) ((cos x-sin x) / (cos x + sin x)) = tan ^ (- 1) ((1-tan x) / (1 + tan x))