Home
Class 11
MATHS
If x = a cos^3 theta, y = b sin^3 theta,...

If `x = a cos^3 theta, y = b sin^3 theta`, then

A

`((a)/(x))^(2//3) + ((b)/(y))^(2//3)=1`

B

`((b)/(x))^(2//3) + ((a)/(y))^(2//3) =1`

C

`((x)/(a))^(2//3) + ((y)/(b))^(2//3) = 1`

D

`((x)/(b))^(2//3) + ((y)/(a))^(2//3)= 1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the eliminant of x=a cos^3 theta, y=b sin^3 theta ?

If x = a cos ^(3) theta and y = b sin ^(3) theta , then the value of ((x)/(a))^(2//3) + ((y)/(b))^(2//3)

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

x=a cos^(3)theta,y=a sin^(3)theta

Find the equation of normal to the curve x = a cos^(3)theta, y=b sin^(3) theta" at point "'theta'.

x=a cos^(3)theta and y=a sin^(3)theta then :-

If x=a cos theta,y=b sin theta, then prove that (d^(3)y)/(dx^(3))=(3b)/(a^(3))csc^(4)theta cot theta

If x=a cos^(3)theta,y=b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

If x=a^(2) cos3 theta and y=b^(2)sin3 theta , then