Home
Class 11
MATHS
If f(x)=cos^(2)x+sec^(2)x, then...

If `f(x)=cos^(2)x+sec^(2)x`, then

A

`f(x) lt 1`

B

`f(x)=1`

C

`2 lt f(x) lt 1`

D

`f(x) ge 2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+sec^(2)x. Then minimum value of f(x) is _(-)

If f(x)=cos^(2)theta+sec^(2)theta, then f(x) f(x)>1( d) f(x)>=2

If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points in

Find the range of f(x)=cos^2x+sec^2x .

Given f(0)=0;f'(0)=0 and f''(x)=sec^(2)x+sec^(2)x tan^(2)x+ then f(x)=

Let f(x)=det[[sec^(2)x,1,1cos^(2)x,cos^(2)x,cos ec^(2)x1,cos^(2)x,cot^(2)x]], then

Range of f(x)=sec^(2)x+4cos ec^(2)x

Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cosec^(2)x),(1,cos^(2)x,cos^(2)x):}| then find the value of f_(0)^(pi//2) f(x) dx.