Home
Class 11
MATHS
41. If sin x + sin^ 2 x = 1, then the v...

41. If ` sin x + sin^ 2 x = 1`, then the value of expression `cos^12x+3cos^10x+3cos^8x+cos^6x-1` is equal to

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1 is

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

The least value of the expression y=(1)/((3sin^(2)x + 3 sin x cos x + 7 cos ^(2)x)) is equal to