Home
Class 11
MATHS
The value of e^(log(10) tan 1^(@) + log...

The value of `e^(log_(10) tan 1^(@) + log _(10) tan 2^(@) + log _(10) tan 3^(@) +"...."+ log_(10) tan 89^(@))` is

A

0

B

e

C

1/e

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

log_(10) tan 1^(@) + log_(10) tan 2^(@) +....+ log_(10) tan 89^(@) =

the value of e^(log_(10)tan1^(@)+log_(10)tan2^(@)+log_(10)tan3^(@)...+log_(10)tan89^(@))

The value of the expression log_(10) (tan 6^(@))+log_(10) (tan 12^(@))+log_(10) (tan 18^(@))+...+log_(10)(tan 84^(@)) is -

log_(10)tan1^(@).log_(10)tan2^(@)*log_(10)tan3^(@)........log_(10)tan50^(@)=0

If log_(10)tan 19^(@) + log_(10) tan 21^(@) + log_(10) tan 37^(@) + log_(10) tan 45^(@) + log_(10) tan 69^(@) + log_(10) tan 71^(@) + log_(10) tan 53^(@) = log_(10) (x)/(2) , then x = ______.

If log_(10) tan 31^(@) . log_(10)tan 32^(@) ... log_(10)tan 60^(@) = log10a , then a = ______.

Prove that : log_(10)tan1^(@)*log_(10)tan2^(@)...log_(10)tan89^(@)=0