Home
Class 11
MATHS
The value of cos^(2)48^(@)-sin^(2)12^(@)...

The value of `cos^(2)48^(@)-sin^(2)12^(@)` is

A

`(sqrt5+1)/(8)`

B

`(sqrt5-1)/(8)`

C

`(sqrt5+1)/(5)`

D

`(sqrt5+1)/(2 sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(2)48^(0)-sin^(2)12^(0) is

cos^(2)48^(@)-sin^(2)12^(0) is equal to

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

The value of sin^(2)42^(@)+sin^(2)48^(@)+tan^(2)60^(@)-cosec30^(@) is equal to :

Find the value of cos48^(@)-sin42^(@) .

Find the value of (cos48^(@)-sin42^(@))

The value of sin^(2)12^(0)+sin^(2)21^(0)+sin^(2)39^(0)+sin^(2)48^(0)-sin^(2)9^(0)-sin^(2)18^(0)

The value of cos^(-1)(cos12)-sin^(-1)(sin12) is

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)