Home
Class 11
MATHS
If (-pi)/(2) < theta < (pi)/(2) " and "...

If ` (-pi)/(2) < theta < (pi)/(2) " and " theta ne pm (pi)/(4),` then the value of ` cot ((pi)/(4) + theta) cot ((pi)/(4) - theta)` is

A

0

B

`-1`

C

1

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

tan^(-1)[(cos x)/(1+sin x)] is equal to (pi)/(4)-(x)/(2), for x in(-(pi)/(2),(3 pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(pi)/(2),(pi)/(2))(pi)/(4)-(x)/(2), for x in(-(3 pi)/(2),(pi)/(2))

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

The argument of (1-i)/(1+i) is (pi)/(2) b.(pi)/(2) c.(3 pi)/(2)d .(5 pi)/(2)

If y=sin^(-1)(sin x),-(pi)/(2)<=x<=(pi)/(2). Then, write the value of (dy)/(dx) for x in(-(pi)/(2),(pi)/(2))

f (x) = {{:( tan^(-1) x , "," , |x| lt (pi)/(2)) , ((pi)/(2) - |x| , "," , |x| ge (pi)/(2)):} then

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))