Home
Class 11
MATHS
If A+B+C=pi and sinC+sinAcosB=0 then tan...

If `A+B+C=pi and sinC+sinAcosB=0` then `tanA cotB` is equal to

A

0

B

`- (1)/(2)`

C

1

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi and sin C+sin A cos B=0 then tan A cot B is equal to

If A+B+C=piandsinC+sinAcosB=0 , then tanA.cotB is equal to

If A+B=45^(@) , then (cotA-1) (cotB-1) is equal to

If sinA+sinB=(pi)/(4),then (tanA+1)(tanB+1) is equal to

If tanA-tanB=x and cotB-cotA=y , then cot(A-B) . is equal to (i) 1/y-1/x (ii) 1/x-1/y (iii)1/y+1/x (iv) 1/(x+y)

If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

If in a A B C , =a^2-(b-c)^2, then tanA is equal to 15//16 b. 8//15 c.8//17 d. 1//2

If (1 + tanA ) (1 + tan B) = 2 ,then (A + B) is equal to