Home
Class 11
MATHS
If sin (theta + alpha) = a and sin (thet...

If `sin (theta + alpha) = a and sin (theta +beta)=b`, then `cos 2 (alpha- beta) -4ab cos (alpha- beta)` is equal to

A

`1- a^(2)-b^(2)`

B

`1- 2a^(2)-2b^(2)`

C

`2+ a^(2) +b^(2)`

D

`2-a^(2)- b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If sin(theta+alpha)=a and sin(theta+beta)=b, prove that cos2(alpha-beta)-4ab cos(alpha-beta)=1-2a^(2)-2b^(2)

If cos (theta - alpha) = a, cos (theta - beta) = b , then the value of sin^(2) (alpha - beta) + 2ab cos (alpha - beta) is

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

It is given that cos(theta-alpha)=a, cos(theta-beta)=b What is sin^(2)(alpha-beta)+2abcos(alpha-beta) equal to ?

If cos(theta-alpha)=a,sin(theta-beta)=b, prove that a^(2)-2ab sin(alpha-beta)+b^(2)=cos^(2)(alpha-beta)