Home
Class 11
MATHS
cos 2 theta cos 2 phi + sin^(2) (theta -...

`cos 2 theta cos 2 phi + sin^(2) (theta - phi) - sin^(2) (theta + phi)` is equal to

A

`sin 2(theta + phi)`

B

`cos 2(theta + phi)`

C

`sin 2(theta -phi)`

D

`cos 2(theta- phi)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)=cos(2 theta+2 phi)

Prove that: cos2 theta*cos2 phi+cos^(2)(theta+phi)-cos^(2)(theta-phi)=cos(2 theta+2 phi)

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =

The value of ((sin theta + sin phi)/(cos theta + cos phi)+ (cos theta - cos phi)/(sin theta - sin phi)) is :

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=

(sin theta-sin phi)^(2)+(cos theta-cos phi)^(2)=4sin^(2)(theta-phi)/(2)