Home
Class 11
MATHS
The vlaue of 1/8(3-4cos 2 theta + cos 4 ...

The vlaue of `1/8(3-4cos 2 theta + cos 4 theta)` is

A

`cos 4 theta`

B

`sin 4 theta`

C

`sin^(4) theta`

D

`cos^(4) theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1)/(8)(3-4cos2 theta+cos4 theta) is (A)cos4 theta(B)sin4 theta(C)sin^(4)theta(D)cos^(4)theta

4cos6 theta cos4 theta cos2 theta=

If 2cos theta+sin theta=1 then the value of 4cos theta+3sin theta is

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If 3tan theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

If range of sin^(2)theta+cos^(4)theta is [k_(1),k_(2)], then the minimum value of cos2 theta+4cos theta+4 is

The value (2cos theta-1)(2cos2 theta-1)(2cos4 theta-1)(2cos8 theta-1)=

8 sin theta * cos theta * cos 2 theta * cos 4 theta = A) sin 4 theta B) sin 8 theta C) sin 16 theta D) cos 8 theta

If (sin theta+cos theta)/(sin theta-cos theta)=3 and theta is an acute angle, then the value of (3sin theta+4cos theta)/(8cos theta-3sin theta) is: यदि (sin theta+cos theta)/(sin theta-cos theta)=3 तो (3sin theta+4cos theta)/(8cos theta-3sin theta) का मान ज्ञात करें ।