Home
Class 11
MATHS
Given that cos ((alpha -beta)/(2)) = 2 c...

Given that `cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)),` then ` tan ""(alpha)/(2) tan ""(beta)/(2)` is equal to

A

`1//2`

B

`1//3`

C

`1//4`

D

`1//8`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha=(2cos beta-1)/(2-cos beta),0

Show that cos^(-1)((cos alpha+cos beta)/(1+cos alpha cos beta))=2tan^(-1)(tan((alpha)/(2))tan((beta)/(2)))

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2 alpha ) is equal to:

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

Prove that cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2 .

cos alpha=(2cos beta-1)/(2-cos beta)(0