Home
Class 11
MATHS
If A, B, C are the angles of a triangle,...

If A, B, C are the angles of a triangle, then `sin 2A + sin 2B - sin 2C` is equal to

A

`4 sin A cos B cos C`

B

`4 cos A`

C

`4 sin A cos A`

D

`4 cos A cos B sin C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

In triangle ABC,the value of sin2A+sin2B+sin2C is equal to

If A, B, C are angles of a triangle, then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC=?

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is