Home
Class 11
MATHS
If sin^(4) alpha + 4 cos^(4) beta+ 2=4 s...

If `sin^(4) alpha + 4 cos^(4) beta+ 2=4 sqrt2 sin alpha cos beta, alpha, beta in [0, pi]` then `cos (alpha + beta) - cos (alpha- beta)` is equal to

A

0

B

`-sqrt2`

C

`-1`

D

`sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

sin^(4)alpha+4cos^(4)beta+2=4sqrt(2)sin alpha cos beta;alpha,beta in[0,pi], then cos(alpha+beta)-cos(alpha-beta) is equal to :

If sin^(4)alpha+cos^(4)beta+2=4 sin alpha cos beta, 0 le alpha, (pi)/(2) , then (sin alpha+cos beta) is equal to

Ifsin^(4)alpha+cos^(4)beta+2=4sin alpha cos beta,0<=alpha,beta<=(pi)/(2) then find the value of (sin alpha+cos beta)

If cos alpha+cos beta=0=sin alpha+sin beta. Prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

The expression (sin alpha+ sin beta)/(cos alpha+cos beta) is equal to:

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta, then prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=