Home
Class 11
MATHS
2 sin^(2) beta + 4 cos (alpha +beta) sin...

`2 sin^(2) beta + 4 cos (alpha +beta) sin alpha sin beta+ cos 2 (alpha +beta)`=

A

`sin 2 alpha`

B

`cos 2 beta`

C

`cos 2 alpha`

D

`sin 2 beta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

Simplify 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)

Prove that 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=cos2 alpha

Show that 2"sin"^(2)beta+4 cos(alpha+beta)"sin" alpha sin beta+cos2(alpha+beta)=cos 2alpha .

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

sin ^ (2) alpha + cos ^ (2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) = (i) sin ^ (2) (alpha) (ii) sin ^ (2) (beta ) (iii) cos ^ (2) (alpha) (iv) cos ^ (2) (beta)

Prove that: cos ^ (2) alpha + cos ^ (2) (alpha + beta) -2cos alpha cos beta cos (alpha + beta) = sin ^ (2) beta

The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 alpha sin^2 beta +cos^2 alpha cos^2 beta is

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]