Home
Class 11
MATHS
If A, B, C, D are the angles of a cyclic...

If A, B, C, D are the angles of a cyclic quadrilateral, then `cos A+ cos B+ cos C+ cos D=`

A

`2(cos A+ cos C)`

B

`2(cos A+ cos B)`

C

`2(cos A + cos D)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

MA.B.C.D are the angles of a cyclic quadrilateral then cos 'fr cos B+cos C-cos D=

If A,B,C,D are the angles of a cyclic quadrilateral and cos A+cos B= K(cos C + cos D), then the value of K is

If A,B,C,D are angles of a cyclic quadrilateral,then prove that cos A+cos B+cos C+cos D=0

If A,B,C,D are angles of a cyclic quadrilateral,prove that cos A+cos B+cos C+cos D=0

If A,B,C and D are the angles of cyclic quadrilateral, prove that: i) cosA + cosB+cosC+cosD ii) cos(180^(@)-A)+cos(180^(@)+B)+cos(180^(@)+C)-sin(90^(@))

If ABCD is a cyclic quadrilateral then cos A + cos B + cos C + cos D is equal to

If ABCD is a cyclic quadrilateral, then cos A + cos B is equal to

A,B,C,D are the angles of a cyclic quardrilateral ABCD , what is the value of cos A+cos B + cos C + cos D ?

if ABCD is a cyclic quadrilateral, then find the value of cosA cosB - cos C cos D.

If A,B,C,D be the angles of a cyclic quadrilateral,taken in order, prove that: cos(180^(@)-A)+cos(180^(@)+B)+cos(180^(@)+C)-sin(90^(@)+D)=0