Home
Class 11
MATHS
The equation a "sin" x+b "cos" x = c, " ...

The equation a `"sin" x+b "cos" x = c, " where"|c| gt sqrt(a^(2) + b^(2))` has

A

1

B

2

C

Infinite

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The equaltion a sin x+b cos x=c, where |c|gtsqrt(a^(2)+b^(2)) has

The equation alpha sin x+b cos x=c where |c|

The equation a sin x+b cos x=c and |c|>sqrt(a^(2)+b^(2)) has

Observe the following statements A.3sin x+4cos x=7 has no solution R.a cos x+b sin x=c has no solution if |c|>sqrt(a^(2)+b^(2)) Then the true statement among the following is

If a cos theta - b sin theta = c, prove that a sin theta + b cos theta = pm sqrt(a^(2) + b^(2) - c^(2)) .

If x_(1) and x_(2) are two distinct roots of the equation a cos x+b sin x=c, then tan((x_(1)+x_(2))/(2)) is equal to (a)(a)/(b) (b) (b)/(a) (c) (c)/(a) (d) (a)/(c)

If alpha and beta satisfy the equation a cos2x+b sin2x=c then prove that (i)cos^(2)alpha+cos^(2)beta=(a^(2)+ac+b^(2))/(a^(2)+b^(2))(ii)cos alpha*cos beta=(a+c)/(2sqrt(a^(2)+b^(2)))

If a cos x-b sin x=c show that a sin x+b cos x=sqrt(a^(2)+b^(2)+c^(2))

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))