Home
Class 11
MATHS
The period of f(x)=sin((pix)/(n-1))+ cos...

The period of `f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2`, is

A

`2pi n (n-1)`

B

`4n (n-1)`

C

`2n (n-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

Find the period of f(x)=sin(pi x)/(n!)-cos(pi x)/((n+1)!)

The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!)) , is

The period of the function sin""((pix)/(2))+cos((pix)/(2)) , is

The period of (sin nx)/(cos((x)/(n))) is 4 pi, where n in Z^(+)

The period of the function f(x)=sin((pi x)/((n+1)!))-sin((pi x)/(n!)) is given by (i) 2(n!) (ii) 2((n+1)!)( iii) 2 pi (iv) 2(n(n+1)!)

The period of the function f(x)=cos(pi(x)/(n!))-sin(pi(x)/((n+1)!)) is

If the period of (cos(sin(nx)))/(tan((x)/(n))),n in N, is 6 pi then n=3( b) 2(c)6(d)1

Let f(x)=sin((x)/(n!))+cos((2x)/((n+1)!)) Find the period of f(x)