Home
Class 11
MATHS
If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)...

If `c^(2)=a^(2) +b^(2),` then `4s(s-a)(s-b)(s-c)` is equal to

A

`s^4`

B

`b^2c^2`

C

`c^2a^2`

D

`a^2b^2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2)=a^(2)+b^(2),2s=a+b+c, then 4s(s-a)(s-b)(s-c)

In DeltaABC,c^(2)=a^(2)+b^(2), then 4s (s -a) (s -b) (s -c) =

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If in a triangle ABC,(s-a)(s-b)=s(s-c), then angle C is equal to

Let a,b,c be real numbers with sum equals zero,let us denote (a^(k)+b^(k)+c^(k))/(k)=S_(k) then (S_(5)S_(2))/(S_(7)) is equal to :

If a + b + c = 2s , then ((s-a)^2 + (s-b)^2 + (s-c)^2 + s^2)/(a^2 + b^2 + c^2) is equal to