Home
Class 11
MATHS
The lengths of the sides of a triangle a...

The lengths of the sides of a triangle are `alpha-beta, alpha+beta` and `sqrt(3alpha^2+beta^2), (alpha>beta>0)`. Its largest angle is

A

`3pi//4`

B

`pi//2`

C

`2pi//3`

D

`5pi//6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The lengths of the sides of a triangle are alpha-beta,alpha+beta and sqrt(3 alpha^(2)+beta^(2)),(alpha>beta>0) Its largest angle is

If the sides of two sides of a right angled triangle are (cos2 alpha+cos2 beta+2cos(alpha+beta)) and (sin2 alpha+sin2 beta+2sin(alpha+beta)) then find the hypotenuse

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If tan(alpha-beta)=1, sec(alpha+beta)=2/(sqrt(3) and alpha, beta are positive then the smallest value of alpha is

If 0<=alpha,beta<=90^(@) and tan(alpha+beta)=3 and tan(alpha-beta)=2 then value of sin2 alpha is

If cos alpha+cos beta=0=sin alpha+sin beta. Prove that cos2 alpha+cos2 beta=-2cos(alpha+beta)

If alpha,beta are the roots of ax^(2)+bx+c-0 then alpha beta^(2)+alpha^(2)beta+alpha beta=

If alpha,beta are the roots of x^(2)-px+q=0 then the equation whose roots are alpha beta+alpha+beta,alpha beta-alpha-beta

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is