Home
Class 11
MATHS
Let tan alpha, tan beta and tan gamma, a...

Let `tan alpha, tan beta and tan gamma, alpha, beta, gamma ne ((2n-1)pi)/(2), n in N` be the slopes of three line segments OA, OB and OC, respectively, where O is origin. If circumcentre of `DeltaABC` coincides with origin and its orthocontre lies on y-axis, then the value of `((cos 3alpha+cos 3beta +cos 3 gamma)/(cos alpha cos beta cos gamma))^(2)` is equal to _________.

Text Solution

Verified by Experts

The correct Answer is:
144
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta+cos gamma=0, then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If cos alpha+cos beta+cos gamma=0; then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If alpha+beta+gamma=2pi , prove that : cos^2 alpha + cos^2 beta + cos^2 gamma-2cosalpha cosbeta cosgamma=1 .

If cos alpha + cos beta + cos gamma = 0 then cos 3alpha + cos 3beta + cos 3gamma = lambda cos alpha *cos beta*cos gamma where lambda is equal to

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If alpha+beta=gamma prove that cos^(2)alpha+cos^(2)beta+cos^(2)gamma=1+2cos alpha cos beta cos gamma

If direction angles of a line are alpha, beta, gamma such that alpha+beta=90^(@) , then (cos alpha+cos beta+cos gamma)^(2)=