Home
Class 11
MATHS
1/(1.2)+1/(2.3)+1/(3.4)+.....+....1/(n.(...

`1/(1.2)+1/(2.3)+1/(3.4)+.....+....1/(n.(n+1))` equals

A

`1/(n(n+1))`

B

`n/(n+1)`

C

`(2n)/(n+1)`

D

`(2)/(n(n+1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of n terms \ of the series: 1/(1. 2)+1/(2. 3)+1/(3. 4)+...............+1/(n.(n+1))

(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+.......+(1)/(n(n+1))=(n)/(n+1),n in N is true for

lim_ (n rarr oo) [(1) / (1.2) + (1) / (2.3) + (1) / (3.4) + ... + (1) / (n (n + 1))] =

If ,Z_(1),Z_(2),Z_(3),.........Z_(n-1) are n^(th) roots of unity then the value of (1)/(3-Z_(1))+(1)/(3-Z_(2))+.........+(1)/(3-Z_(n-1)) is equal to

For all quad prove that (1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))=(n)/(n+1)

Using the principle of mathematical induction prove that (1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

Prove the following by using the principle of mathematical induction for all n in Nvdots(1)/(1.2.3)+(1)/(2.3.4)+(1)/(3.4.5)+...+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to