Home
Class 11
MATHS
Sum of the n terms of the series (3)/(1^...

Sum of the n terms of the series `(3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......."` is

A

`(2n)/(n+1)`

B

`(4n)/(n+1)`

C

`(6n)/(n+1)`

D

`(9n)/(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum to n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+--

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... is

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is

The sum to 50 terms of series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... is equal to

Let S_(n) be the sum to n terms of the series (2)/(1 ^(2)) + (5)/(1 ^(2) + 2^(2)) + (7)/(1^(2) + 2^(2) + 3^(2)) + (9)/(1 ^(2) + 2^(2) + 3 ^(2) + 6 ^(2))+ ……. then

the sum (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto 11 terms

Find the sum to n terms of the series: 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+

Find the sum to n terms of the series: (3)/(1^(2).2^(2))+(5)/(2^(2).3^(2))+(7)/(3^(2).4^(2))+