Home
Class 11
MATHS
If log(3)2, log(3)(2^(x)-5) and log(3)(2...

If `log_(3)2, log_(3)(2^(x)-5)` and `log_(3)(2^(x)-7//2)` are in AP then x is equal to:

A

2

B

3

C

4

D

2,3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log_(10)(2),log_(10)(2^(x)+1),log_(10)(2^(x)-3) are in A.P then x is equal to (i)log_(2)(5)( ii) log_(2)(-1) (iii) log_(2)((1)/(5))( iv) log_(5)(2)

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.

If log_(3)(2),log_(3)(2^(x)-5),log_(3)(2^(x)-(7)/(2)) are in A.P.Determine the value of x.

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.(1991,4M)

If log_(5)2,log_(5)(2^(x)-3) and log_(5)((17)/(2)+2^(x-1)) are in AP, then the value of x is

If log_(3)2,log_(3)(2^(x)-5),log_(3)(2^(x)-7/2) are in arithmetic progression, then the value of x is equal to