Home
Class 11
MATHS
If a1,a2,a3,....an are positive real num...

If `a_1,a_2,a_3,....a_n` are positive real numbers whose product is a fixed number c, then the minimum value of `a_1+a_2+....+a_(n-1)+2a_n` is
(a) `n(2c)^(1/n)`
(b) `(n + 1)c^(1/n)`
(c) `2nc^(1/n)`
(d) `(n + 1) (2c)^(1/n)`

A

`n(2C)^(1//n)`

B

`(n+1)c^(1//n)`

C

`2nc^(1//n)`

D

`(n+1)(2c)^(1//n)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

Statement-1 : If a_1,a_2,a_3 ,….. a_n are positive real numbers , whose product is a fixed number c, then the minimum value of a_1+a_2+…. + a_(n-1)+2a_n is n(2C)^(1/n) Statement-2 :A.M. ge G.M.

If a_(1),a_(2),a_(n) are positive real numbers whose product is a fixed number c, then the minimum value of a_(1)+a_(2)++a_(n-1).........+2a_(n) is a_(n-1)+2a_(n) is b.(n+1)c^(1/n)2nc^(1/n)(n+1)(2c)^(1/n)

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1, a_2, a_3,...a_n are in A.P with common difference d !=0 then the value of sind(coseca_1 coseca_2 +cosec a_2 cosec a_3+...+cosec a_(n-1) cosec a_n) will be

If a_1, a_2,......,a_n are n distinct odd natural numbers not divisible by any prime greater than 5, then prove that (1)/(a_1)+(1)/(a_2)+…..+(1)/(a_n) lt 2 .

If a_(n) = n(n!) , then what is a_1 +a_2 +a_3 +......+ a_(10) equal to ?

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))

If a_1+a_2+a_3+......+a_n=1 AA a_1 > 0, i=1,2,3,......,n, then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n.