Home
Class 11
MATHS
If a, b, c, d and p are different real n...

If a, b, c, d and p are different real numbers such that `(a^2+b^2+c^2) p^2 - 2(ab+bc+cd)p+(b^2+c^2+d^2)le0` a, b, c, d are in

A

A. P.

B

G. P.

C

H. P.

D

ab = cd

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d and p are different real numbers such that: (a^(2)+b^(2)+c^(2))p^(I2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

If a,b,c,d and p are different real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 ,then show that a,b,c and d are in G.P.

if a,b, c, d and p are distinct real number such that (a^(2) + b^(2) + c^(2))p^(2) - 2p (ab + bc + cd) + (b^(2) + c^(2) + d^(2)) lt 0 then a, b, c, d are in

If a,b,c,d and p are distinct real numbers such that (a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)p+(b^(2)+c^(2)+d^(2))<=0 then prove that a,b,c,d are in G.P.

If a,b,c,d and p are distinct real numbers such that (1987,2M)(a^(2)+b^(2)+c^(2))p^(2)-2(ab+bc+cd)P+(b^(2)+c^(2)+d^(2))>=0, then a,b,c,d are in AP(b) are in GP are in HP(d) satisfy ab=cd

If a,b,c,d are such unequal real numbers that (a^(2)+b^(2)+c^(2))p^(2)-2 (ab+bc+cd) p+ (b^(2)+c^(2)+d^(2)) le 0 then a,b,c, d are in -

Let a,b,c,d and p be any non zero distinct real numbers such that (a^(2) + b^(2) + c^(2))p^(2) - 2(ab+bc+cd)p+ (b^(2) + c^(2) + d^(2))=0 . Then :

If a,b,c,d, x are real and the roots of equation (a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)=0 are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these