Home
Class 11
MATHS
Consider three points P=(-sin (beta-alph...

Consider three points `P=(-sin (beta-alpha),-cos beta)`,
`Q=(cos (beta-alpha),sin beta)`
and`R=(cos (beta-alpha+theta),sin (beta-theta)`
where `0 lt alpha, beta, theta lt (pi)/4`. Then

A

P lies on the line segment RQ

B

Q lies on the line segment PR

C

R lies on the line segment QP

D

P, Q, R are non-collinear

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three points P=(-sin(beta-alpha),-cos beta)Q=(cos(beta-alpha),sin beta), and R=((cos(beta-alpha+theta),sin(beta-theta)), where 0

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

Ifcos alpha+cos beta=a,sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=