Home
Class 11
MATHS
Locus of centroid of the triangle whose ...

Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where is a

A

`(3x-1)^2+(3y)^2=a^2-b^2`

B

`(3x-1)^2+(3y)^2=a^2+b^2`

C

`(3x+1)^2+(3y)^2=a^2+b^2`

D

`(3x+1)^2+(3y)^2=a^2-b^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the locus of the centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t,-b cos t), and (1,0), where t is a parameter,is circle.

Locus of centroid of the triangle whose vertices are (a cos t ,a s in t ), (b s in t ,-b cos t ) and (1, 0), where t is a parameter, is (3x-1)^2+(3y)^2=a^2-b^2 (3x-1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2+b^2 (3x+1)^2+(3y)^2=a^2-b^2

Locus of centroid of the triangle whose vertices are (a cos t,a sin t),(b sin t-b cos t)and(1,0) where t is a parameter is: (3x-1)^(2)+(3y)^(2)=a^(2)-b^(2)(3x-1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)+b^(2)(3x+1)^(2)+(3y)^(2)=a^(2)-b^(2)

Find the locus of the centroid of a triangle whose vertices are (a cos t,a sin t),(b sin t,-b cos t) and (1,0) where t' is the parameter.

x=a cos t, y=b sin t

x = a (cos t + sin t), y = a (sin t-cos t)

Area of a triangle whose vertices are (a cos theta, b sin theta) , ( - a sin theta , b cos theta) " and " ( - a cos theta, - b sin theta) is

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx