Home
Class 11
MATHS
The locus of the point of intersection o...

The locus of the point of intersection of the lines `x sin theta+ (1 - cos theta)y = a sin theta` and `x sin theta - (1+ cos theta)y + a sin theta= 0` is

A

`y =pmax`

B

`x =pmax`

C

`y^2 =4ax`

D

`x^2 +y^2 =a^2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is

For different values of theta, the locus of the point of intersection of the straight lines x sin theta-y(cos theta-1)=a sin theta and x sin theta-y(cos theta+1)+a sin theta=0 represents

The locus of the points of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b , ( theta= variable) is :

Prove that for all values of theta ,the locus of the point of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b is a circle.

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

The locus of lhe point of intersection of the lines x+4y=2a sin theta,x-y=a cos theta where theta is a variable parameter is

(1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta