Home
Class 11
MATHS
For all values of theta, the locus of th...

For all values of `theta`, the locus of the point of intersection of the lines `x cos theta+ y sin theta= a and x sin theta- y cos theta=b` is

A

An ellipse

B

A circle

C

A parabola

D

A hyperbola

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the points of intersection of the lines x cos theta+y sin theta=a and x sin theta-y cos theta=b , ( theta= variable) is :

For different values of theta, the locus of the point of intersection of the straight lines x sin theta-y(cos theta-1)=a sin theta and x sin theta-y(cos theta+1)+a sin theta=0 represents

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

Locus of point of intersection of the lines x sin theta-y cos theta=0 and ax sec theta-by cos ec theta=a^(2)-b^(2)

The equation of the locus of the point of intersection of the straight lines x sin theta+(1-cos theta)y=a sin theta and x sin theta-(1-cos theta)y+a sin theta=0 is

The eliminant of theta from x cos theta - y sin theta = 2 , x sin theta + y cos theta = 4 will give

If (alpha,beta) is a point of intersection of the lines x cos theta+y sin theta=3 and x sin theta-y cos theta=4 where theta is parameter,then maximum value of 2(a+beta)/(sqrt(2)) is

Eliminate theta from the following equation: x cos theta-y sin theta=a,x sin theta+y cos theta=b