Home
Class 11
MATHS
If the line lx+my+n=0 is tangent to the ...

If the line `lx+my+n=0` is tangent to the circle `x^(2)+y^(2)=a^(2)` , then find the condition.

A

`n^(2) (l^(2) +m^(2))=a^(2)`

B

`a^(2) (l^(2) +m^(2))=n^(2)`

C

`n(l+m)=a`

D

`a(l+m)=n`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the line lx+my+n=0 is tangent to the circle x^2+y^2-2ax=0 then find the condition

The straight line lx+my=1 intersects px^(2)+2qxy+ry^(2)=s at AB.Chord AB subtends a right angle at the origin.If lx+my=1 is a tangent to a circle x^(2)+y^(2)=a^(2), then a=

If lx + my + n = 0 is tangent to the parabola x^(2)=y , them

The line lx+my+n=0 is a tangent to the curve y=x-x^2+x^3 , then

If the line lx+my-1=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l,m) lies on a circle.

If lx+my+n=0 is a tangent to the rectangular hyperbola xy=c^(2) , then

If the line Ix+my+n=0 is a tangent to the parabola y^(2)=4ax, then locus of its point of contact is:

If the line lx+my+n=0 touches the circle x^(2)+y^(2)=a^(2), then prove that (l^(2)+m^(2))^(2)=n^(2)

The line lx+my+n=0 is a normal to the parabola y^(2)=4ax if