Home
Class 11
MATHS
The length of the chord joining the poin...

The length of the chord joining the points ( `4cos theta , 4 sin theta ) ` and `[ 4 cos ( theta + 60^(@)), 4 sin ( theta + 60^(@))]` of the circle `x^(2) +y^(2) =16` is `:`

A

16

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The length ofthe chord joining the points (4cos theta,4sin theta) and [4cos theta+60^(@)),4sin(theta+60^(@))] of the circle x^(2)+y^(2)=16 is

The eliminant of theta from x cos theta - y sin theta = 2 , x sin theta + y cos theta = 4 will give

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

4 sin theta * cos^(3) theta-4 cos theta * sin ^(3)theta= A) 4 cos theta B) cos 4 theta C) 4 sin theta D) sin 4 theta

If sin theta+ cos theta= (1)/(2) , then 16(sin (2theta)+ cos (4theta) + sin (6theta)) is equal to

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

sin ^ (4) theta + 2sin ^ (2) theta (1- (1) / (cos ec ^ (2) theta)) + cos ^ (4) theta =