Home
Class 11
MATHS
The line x cosalpha + y sinalpha = p wil...

The line `x cosalpha + y sinalpha = p` will be a tangent to the circle `x^2 + y^2-2ax cos alpha-2ay sinalpha = 0`.1f p =

A

0 or a

B

0

C

2a

D

0 or 2a

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The line x cos alpha+y sin alpha=p will be a tangent to the circle x^(2)+y^(2)-2ax cos alpha-2ay sin alpha=0.1fp=

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line ax + by + c = 0 intersects the line x cosalpha + y sinalpha=c at the point P and angle between them is pi/4 . If the line x sinalpha - y cosalpha = 0 also passes through the point P, then:

If the straight line y=x sin alpha+a sec alpha be a tangent to the circle then show that cos^(2)alpha=1

Find the equation of tangent to the circle x^(2)+y^(2)-2ax=0 at the point [a(1+cosalpha),asinalpha]

If the line x cos alpha+y sin alpha=P touches the curve 4x^(3)=27ay^(2), then (P)/(a)=

The line x cos alpha + y sin alpha +y sin alpha =p is tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1. if