Home
Class 11
MATHS
x = 4 (1+cos theta ) and y=3 (1+sin thet...

x = 4 (1+cos `theta `) and y=3 (1+sin `theta`) are the paramatic equations of

A

`(9x-3)^(2))/(9) + ((y-4)^(2))/(16)=1`

B

`((x+4)^(2))/(16) + ((y+3)^(2))/(9)=1`

C

`((x-4)^(2))/(16)- ((y-3)^(2))/(9)=1`

D

`((x-4)^(2))/(16) + ((y-3)^(2))/(9)= 1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=x_(1)+-r cos theta,y=y_(1)+-r sin theta be the equation of straight line then,the parameter in this equation is

If x = 3sin theta + 4cos theta and y = 3cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

The radius of the circle whose equation is given parametrically as x=3sin theta-4cos theta and y=3cos theta+4sin theta , theta belongs to R is equal to

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .

x sin ^ (3) theta + y cos ^ (3) theta = sin theta cos theta and x sin theta = y cos theta Find the value of x ^ (2) + y ^ (2)

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta ne 0 and x sin theta - y cos theta = 0 , then value of (x^(2) + y^(2)) is :

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then

Show that the equation of the normal at any point 'theta' on the curvex = 3 cos theta -cos^(3) theta, y=3 sin theta -sin^(3) theta is 4(y cos^(3)theta -x sin^(3) theta)=3 sin 4 theta.