Home
Class 11
MATHS
If the parabola y^(2)=(lambda x)/(4) and...

If the parabola `y^(2)=(lambda x)/(4)` and `25((x-3)^(2)+(y+2)^(2))=(3x-4y-2)^(2)` are equal then `lambda`=

Text Solution

Verified by Experts

The correct Answer is:
6
Promotional Banner

Similar Questions

Explore conceptually related problems

If parabolas y^(2)=lambda x and 25[(x-3)^(2)+(y+2)^(2)]=(3x-4y-2)^(2) are equal,then the value of lambda is 9(b)3(c)7 (d) 6

If a parabola is represented by 25(x^(2)+y^(2))=(4x-3y-12)^(2), then

The equation of the directrix of the parabola 25{(x-2)^(2)+(y+5)^(2)}=(3x+4y-1)^(2), is

Length of the latus rectum of the parabola 25[(x-2)^(2)+(y-3)^(7)]=(3x-4y+7)^(2) is

The intercepts made by the line y=x+lambda on the circles x^(2)+y^(2)-4=0 and x^(2)+y^(2)-10x-14y+65=0 are equal,then the value of 2 lambda-3 is

If the equation x^(2)+y^(2)+2 lambda x+4=0 and x^(2)+y^(2)-4 lambda y+8=0 represent real circles then the valueof lambda can be

If the area (in sq.units) bounded by the parabola y^(2)=4 lambda x and the line y=lambda x,lambda>0, is (1)/(9), then lambda is equal to:

The area of the region enclosed by the parabolas y=4x-x^(2) and 3y=(x-4)^(2) is equal to

If the equation 5[(x-2)^(2)+(y-3)^(2)]=(lambda^(2)-2 lambda+1)(2x+y-1)^(2) represents an ellipse then