Home
Class 11
MATHS
If the tangent to the conic, y - 6= x^2 ...

If the tangent to the conic, `y - 6= x^2` at `(2, 10)` touches the circle, `x^2 + y^2 + 8x -2y= k` (for some fixed `k`) at a point `(alpha, beta);` then

A

`(- (6)/(17),(10)/(17))`

B

`(-(8)/(17), (2)/(17))`

C

`(-(4)/(17), (1)/(17))`

D

`(- (7)/(17), (6)/(17))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If tangent to the parabola y^2=8x at (2,-4) also touches the circle x^2+y^2=a . then find the value of a

Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0

The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle x^(2)+y^(2)+18x+14y+lambda=0 at Q. The coordinates of point Q are

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

The tangent to the circle x^(2)+y^(2)=5 at the point (1, -2) also touches the circle x^(2)+y^(2)-8x+6y+20=0 at the point

The tangent to the circle x^(2)+y^(2)=5 at a point (a,b) , touches the circle x^(2)+y^(2)-8x+6y+20=0 at (3,-1) .The values of a and b are