Home
Class 11
MATHS
If P(3 sec theta,2 tan theta) and Q(3 se...

If `P(3 sec theta,2 tan theta)` and `Q(3 sec phi , 2 tan phi)` where `theta+pi=(phi)/(2)` be two distainct points on the hyperbola then the ordinate of the point of intersection of the normals at p and Q is

A

`(11)/(3)`

B

`- (11)/(3)`

C

`(13)/(2)`

D

`-(13)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(a sec theta,b tan theta) and Q(a sec c phi,b tan phi) (where theta+phi=(pi)/(2) be two points on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 If (h,k) is the point of intersection of the normals at P and Q then k is equal to (A) (a^(2)+b^(2))/(a)(B)-((a^(2)+b^(2))/(a))( C) (a^(2)+b^(2))/(b)(D)-((a^(2)+b^(2))/(b))

Let A(sec theta , 2 tan theta) and B(sec phi , 2 tan phi) , where theta+phi=pi//2 be two points on the hyperbola 2x^(2)-y^(2)=2 . If (alpha, beta) is the point of the intersection of the normals to the hyperbola at A and B, then (2beta)^(2) is equal to _________.

If tan theta=1/2 and tan phi=1/3, then tan(2 theta+phi)

If tan theta+tan phi=a and cot theta+cot phi=b then cot(theta+phi)=