Home
Class 12
MATHS
P is the point of intersection of the di...

P is the point of intersection of the diagonals of the parallelogram ABCD. If O is any point, then `vec(OA) +vec(OB)+ vec(OC)+ vec(OD)`=

A

`vec(OP)`

B

`2vec(OP)`

C

`3vec(OP)`

D

`4 vec(OP)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then O vecA + O vec B + O vec C + vec (OD) =

If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then O vecA + O vec B + O vec C + vec (OD) =

ABDC is a parallelogram and P is the point of intersection of its diagonals. If O is any point, then overline(OA)+overline(OB)+overline(OC)+overline(OD)=

If diagonals of a parallelogram ABCD intersect each other in M, then bar(OA) + bar(OB) + bar(OC) + bar(OD) =

If G si the intersectioinof diagonals of a parallelogram ABCD and O is any point then Ovec A+Ovec B+Ovec C+Ovec D=2vec OG b.4vec OG c.5vec OG d.3vec OG

If E is the intersection point of diagonals of parallelogram ABCD and vec( OA) + vec (OB) + vec (OC) + vec (OD) = xvec (OE) where O is origin then x=

ABCD is a quadrilateral.E is the point of intersection of the line joining the midpoints of the opposite sides.If O is any point and vec OA+vec OB+vec OC+vec OD=xvec OE, then x is equal to a.3 b.9 c.7 d.4

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

ABCD is parallelogram and P is the point of intersection of its diagonals.If O is the origin of reference,show that vec OA+vec OB+vec OC+vec OD=4vec OP

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '