Home
Class 12
MATHS
In a right angled triangle ABC, the hypo...

In a right angled triangle ABC, the hypotenuse AB =p, then `vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB)` is equal to:

A

`2p^(2)`

B

`(p^(2))/(2)`

C

`p^(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB) equal to ?

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

In a triangle ABC, if taken in order, consider the following statements: 1. vec(AB)+vec(BC)+vec(CA)=vec(0) 2. vec(AB)+vec(BC)-vec(CA)=vec(0) 3. vec(AB)-vec(BC)+vec(CA)=vec(0) 4. vec(BA)-vec(BC)+vec(CA)=vec(0) How many of the above statements are correct?