Home
Class 12
MATHS
For non-zero vectors veca and vecb if |...

For non-zero vectors `veca and vecb` if `|veca+vec b| lt |vec a-vec b|`, then `vec a and vec b` are

A

Collinear

B

Perpendicular to each other

C

Inclined at an acute angle

D

Inclined at an obtuse angle

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

For any two vectors vec a, vec b | vec a * vec b | <= | vec a || vec b |

For any three non-zero vectors vec a, vec b and vec c if | (vec a xxvec b) * vec c | = | vec a || vec b || vec c | then vec a * vec b + vec b * vec c + vec c * vec a =

If vec a and vec b are two non-zero vectors such that |vec a xxvec b|=vec a*vec b, then angle between vec a and vec b

For any two vectors vec a and vec b prove that | vec a + vec b | <= | vec a | + | vec b |

If for three non zero vectors vec a,vec b and vec cvec a*vec b=vec a.vec c and vec a xxvec b=vec a xxvec c, the show that vec b=vec c .

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

What is the property of two vectores vec A and vec B if: (A) |vecA + vecB|= |vecA - vecB| (b) vecA + vecB = vecA - vecB

Non-zero vectors vec a, vec b and vec c satisfy vec a * vec b = 0, (vec b-vec a) (vec b + vec c) = 0 and 2 | vec b + vec c | = | vec b -vec a | If vec a = muvec b + 4vec c then possible value of mu are