Home
Class 12
MATHS
If vec(a) xx vec(b)= vec(c) xx vec(d) an...

If `vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) = vec(b) xx vec(d)`, then `vec(a) - vec(d)` is parallel to

A

`vec(b) +vec(c)`

B

`vec(b) -2vec(c)`

C

`vec(b) +2 vec(c)`

D

`vec(b)-vec(c)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx vec(d)," show that " (vec(a)- vec(d)) " is parallel to " (vec(b)-vec(c)) , it being given that a !=d and b != c.

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

If vec a xxvec b=vec c xxvec d and vec a xxvec c=vec b xxvec d then show that vec a-vec d is parallel to vec b-vec c where a!=d and b!=c

The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx vec(b) = vec(c) xx d and vec(a) xx vec(c)= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)-vec(d))xx (vec(b)-vec(c))=vec(0) 2. (vec(a)xx vec(b))xx (vec(c)xx vec(d))=vec(0) Select the correct answer using the code given below :

if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a) = lamda (vec(b) xx vec(c )) then what is the value of lamda ?

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))