Home
Class 12
MATHS
Let vec(a), vec(b), vec(c) be three vect...

Let `vec(a), vec(b), vec(c)` be three vectors in the xyz space such that `vec(a) xx vec(b)= vec(b) xx vec(c) = vec(c) xx vec(a) ne 0`. If A , are points with position B , C vectors `vec(a), vec(b), vec(c)` respectively, then the number of possible positions of the centroid of triangle ABC is

A

1

B

2

C

3

D

6

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a,vec b,vec c be three vectors in the xyz space such that vec a times vec b=vec b timesvec c=vec c timesvec a!=0 If A,B,C are points with position vectors vec a,vec b,vec c respectively,then the number of possible positions of the centroid of triangle ABC is (A) 1 (B) 2 (C) 3 (D) 6

Let vec a, vec b, vec c be three vectors from vec a xx (vec b xxvec c) = (vec a xxvec b) xxvec c, if

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c