Home
Class 12
MATHS
If the given vectors (-bc,b^2+bc,c^2+bc)...

If the given vectors `(-bc,b^2+bc,c^2+bc)(a^3+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab)` are coplanar, where none of `a,b and c` is zero then

A

`a^(2) +b^(2)+c^(2)=1`

B

`bc+ca+ab=0`

C

`a+b+c=0`

D

`a^(2)+b^(2)+c^(2)=bc+ca+ab`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+ab,b^2+ab,-ab) are coplanar, where none of a,b and c is zero then

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab, -ab]|=(ab+bc+ca)^2

Let Delta = |(-bc, b^2 + bc, c^2 + bc),(a^2 + ac , - ac, c^2 + ac),(a^2 + ab , b^2 + ab, -ab)| and the equation px^3 + qx^2 + rx + s = 0 has roots a,b,c where a,b,c in R^(+) , then if Delta = 27 and a^2 + b^2 + c^2 = 2 , find (sqrt(2) p)/(q) + 1 .

| [-bc, b ^ (2) + bc, c ^ (2) + bca ^ (2) + ac, -ac, c ^ (2) + aca ^ (2) + ab, b ^ (2) + ab, -ab (ab + bc + ac), is = 64. then