Home
Class 12
MATHS
The point of intersection of the lines ...

The point of intersection of the lines
`vec(r) = 7hat(i) + 10 hat(j)+ 13 hat(k)+vec(s)(2hat(i) + 3hat(j)+4hat(k))` and `vec(r) = 3hat(i) + 5hat(j) + 7hat(k) + t(hat(i) + 2hat(j) + 3hat(k))` is

A

`hat(i)+hat(j)-hat(k)`

B

`2hat(i)-hat(j)+4hat(k)`

C

`hat(i)-hat(j)+hat(k)`

D

`hat(i)+hat(j)+ hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find out whether the following pairs of lines are parallel, non parallel, & intersecting, or non-parallel & non-intersecting. vec(r_(1)) = hat(i) - hat(j) + 3hat(k) + lambda(hat(i) - hat(j)+hat(k)) vec(r_(2)) = hat(i) - hat(j) + 3hat(k) + lambda(hat(i) - hat(j) + hat(k)) vec(r_(2)) = 2hat(i) + 4hat(j) + 6hat(k) + mu (2hat(i) + hat(j) + 3hat(k))

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .