Home
Class 12
MATHS
The number of distinct real values of la...

The number of distinct real values of `lambda`, for which the vectors `-lambda^(2)hat(i)+hat(j)+hat(k), hat(i)-lambda^(2)hat(j)+hat(k) and hat(i)+hat(j)-lambda^(2)hat(k)` are coplanar, is

A

Zero

B

One

C

Two

D

Three

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real values of lambda, for which the vectors -lambda^(2)hat i+hat j+k,hat i-lambda^(2)hat j+hat k and hat i+hat j-lambda^(2)hat k are coplanar is a.zero b.one c.two d.three

The vectors lamdahat(i)+hat(j)+2hat(k),hat(i)+lamdahat(j)-hat(k) and 2hat(i)-hat(j)+lamda hat(k) are coplanar, if

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

What is the value of lambda for which the vectors 3hat(i)+4hat(j)-hat(k) and -2hat(i)+lambda hat(j)+10hat(k) are perpendicular?

The value of 'lambda' for which the two vectors : 2hat(i)-hat(j)+2hat(k) and 3hat(i)+lambda hat(j)+hat(k) are perpendicular is :

The sum of the distinct real values of mu for which the vectors, muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k) are co-planar is :