Home
Class 12
MATHS
If (veca xx vecb)xx vec c=veca xx (vecb...

If `(veca xx vecb)xx vec c=veca xx (vecb xx vec c)`, where `veca, vecb and vec c` are any three vectors such that `veca*vecb ne 0, vecb*vec c ne 0`, then `veca and vec c` are :

A

Inclined at an angle of `(pi)/(3)` between then

B

Inclined at an angle of `(pi)/(6)` between them

C

Perpendicular

D

Parallel

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

if veca xx vecb = vecc.vecb xx vecc = veca , " where " vecc ne vec0 then

Let veca, vecb and vec c be any three vectors; then prove that [[vecaxxvecb, vecbxxvecc, veccxxveca]] = [[veca, vecb, vecc]]^2

If veca , vecb , vec c are any three coplanar unit vectors , then :

Show that if vecA. (vecBxxvec c)=0 , then vecA, vecB and vec c are coplanar .