Home
Class 12
MATHS
If a, b, c are three non-zero, non -copl...

If a, b, c are three non-zero, non -coplanar vectors and `b_(1) = b- (b.a)/(|a|^(2))a, b_(2) = b + (b.a)/(|a|^(2))a and c_(1) = c - (c.a)/(|a|^(2)) a-(c.b)/(|b|^(2)),`
`c_(2) = c-(c.a)/(|a|^(2))a-(c.b)/(|b_(1)|^(2))b_(1),`
`c_(3) = c - (c.a)/(|a|^(2)) a-(c.b_(2))/(|b_(2)|^(2))b_(2)`,
`c_(4) = a-(c.a)/(|a|^(2))a`.
Then which of the following is a set of mutually orthogonal vectors

A

`{a, b_(1), c_(1)}`

B

`{a,b_(1),c_(2)}`

C

`{a,b_(2),c_(3)}`

D

`{a,b_(2),c_(4)}`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b and c are unit coplanar vectors, then [[2a-b, 2b-c, 2c-a]] is equal to

(1)/(c),(1)/(c),-(a+b)/(c^(2))-(b+c)/(c^(2)),(1)/(a),(1)/(a)(-b(b+c))/(a^(2)c),(a+2b+c)/(ac),(-b(a+b))/(ac^(2))]| is

If a,b,c are three non-coplanar vectors, then 3a-7b-4c,3a-2b+c and a+b+lamdac will be coplanar, if lamda is

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

If (a)/(b+c) + (b)/(c+a) + (c )/(a+b)= 1 find (a^(2))/(b+c) + (b^(2))/(c+a) + (c^(2))/(a+b)= ?